From Rewrite Rules to Axioms in the $$\lambda \varPi $$-Calculus Modulo Theory

Author:

Blot Valentin,Dowek GillesORCID,Traversié Thomas,Winterhalter ThéoORCID

Abstract

AbstractThe $$\lambda \varPi $$ λ Π -calculus modulo theory is an extension of simply typed $$\lambda $$ λ -calculus with dependent types and user-defined rewrite rules. We show that it is possible to replace the rewrite rules of a theory of the $$\lambda \varPi $$ λ Π -calculus modulo theory by equational axioms, when this theory features the notions of proposition and proof, while maintaining the same expressiveness. To do so, we introduce in the target theory a heterogeneous equality, and we build a translation that replaces each use of the conversion rule by the insertion of a transport. At the end, the theory with rewrite rules is a conservative extension of the theory with axioms.

Publisher

Springer Nature Switzerland

Reference24 articles.

1. Adams, R.: Pure type systems with judgemental equality. Journal of Functional Programming 16(2), 219–246 (2006). https://doi.org/10.1017/S0956796805005770

2. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert, F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a Logical Framework based on the $$\lambda \varPi $$-Calculus Modulo Theory (2016), manuscript

3. Blanqui, F., Dowek, G., Grienenberger, E., Hondet, G., Thiré, F.: A modular construction of type theories. Logical Methods in Computer Science Volume 19, Issue 1 (Feb 2023). https://doi.org/10.46298/lmcs-19(1:12)2023, https://lmcs.episciences.org/10959

4. Blot, V., Dowek, G., Traversié, T.: An Implementation of Set Theory with Pointed Graphs in Dedukti. In: LFMTP 2022 - International Workshop on Logical Frameworks and Meta-Languages : Theory and Practice. Haïfa, Israel (Aug 2022), https://inria.hal.science/hal-03740004

5. Cockx, J., Abel, A.: Sprinkles of extensionality for your vanilla type theory (2016)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proofs for Free in the λΠ-Calculus Modulo Theory;Electronic Proceedings in Theoretical Computer Science;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3