Author:
Jing Rongqi,Jiang Zhengwei,Wang Qiuyun,Wang Shuwei,Li Hao,Chen Xiao
Publisher
Springer Nature Switzerland
Reference32 articles.
1. Malware Attribute Enumeration and Characterization (MAEC) (2023). https://maecproject.github.io/. Accessed 11 Nov 2023
2. Balan, G., Gavriluţ, D.T., Luchian, H.: Using API calls for sequence-pattern feature mining-based malware detection. In: Su, C., Gritzalis, D., Piuri, V. (eds.) ISPEC 2022, pp. 233–251. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21280-2_13
3. Busch, J., Kocheturov, A., Tresp, V., Seidl, T.: Nf-gnn: network flow graph neural networks for malware detection and classification. In: Proceedings of the 33rd International Conference on Scientific and Statistical Database Management, pp. 121–132. Association for Computing Machinery (2021)
4. Chang, H.Y., Yang, T.Y., Zhuang, C.J., Tseng, W.L.: Ransomware detection by distinguishing api call sequences through lstm and bert models. Comput. J. 13, 5439 (2023)
5. Cremer, F., Sheehan, B., Fortmann, M., Kia, A.N., Mullins, M., Murphy, F., Materne, S.: Cyber risk and cybersecurity: a systematic review of data availability. Geneva Papers Risk Insur. Issues Pract. 47, 698–736 (2022)