1. Wen, H., Guo, W., Li, X.: A novel deep clustering network using multi-representation autoencoder and adversarial learning for large cross-domain fault diagnosis of rolling bearings. Expert Syst. Appl. 225(3), 34–38 (2023)
2. Rezaei, N., Pezhmani, Y., Mohammadiani, R.P.: Optimal stochastic self-scheduling of a water-energy virtual power plant considering data clustering and multiple storage systems. J. Energy Storage 65(3), 312–319 (2023)
3. Soares, D., Henriques, R., Gromicho, M., et al.: Triclustering-based classification of longitudinal data for prognostic prediction: targeting relevant clinical endpoints in amyotrophic lateral sclerosis. Sci. Rep. 13(1), 89–96 (2023)
4. Pan, L., Xie, S., Cao, X.: Application of multi-classification algorithms based on ECOC in MOOC data mining. J. Jimei Univ. (Nat. Sci.) 26(2), 146–151 (2021)
5. Zhang, X., An, J., Cao, R.: A data stream classification algorithm based on adaptive random forest ensemble model. Comput. Eng. Sci. 42(3), 543–549 (2020)