Rethinking PET Image Reconstruction: Ultra-Low-Dose, Sinogram and Deep Learning
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-59728-3_76
Reference24 articles.
1. Wang, Y., et al.: Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping- based sparse representation. Phys. Med. Biol. 61(2), 791 (2016)
2. Wang, Y., et al.: Semi-supervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans. Biomed. Eng. 64(3), 569–579 (2017)
3. Cui, Jianan, et al.: CT-guided PET parametric image reconstruction using deep neural network without prior training data. In: Medical Imaging 2019: Physics of Medical Imaging. International Society for Optics and Photonics, vol. 10948, p. 109480Z (2019)
4. Chen, K.T., et al.: Ultra-low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology 290(3), 649–656 (2019)
5. Lecture Notes in Computer Science;O Ronneberger,2015
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semi-Supervised Standard-Dose PET Image Generation via Region-Adaptive Normalization and Structural Consistency Constraint;IEEE Transactions on Medical Imaging;2023-10
2. Low-count whole-body PET/MRI restoration: an evaluation of dose reduction spectrum and five state-of-the-art artificial intelligence models;European Journal of Nuclear Medicine and Molecular Imaging;2023-01-12
3. TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction from Low-Dose Sinograms;Lecture Notes in Computer Science;2023
4. PET Synthesis via Self-Supervised Adaptive Residual Estimation Generative Adversarial Network;IEEE Transactions on Radiation and Plasma Medical Sciences;2023
5. A Total-Body Ultra-Low Dose PET Reconstruction Method via Image Space Shuffle U-Net and Body Sampling;IEEE Transactions on Radiation and Plasma Medical Sciences;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3