1. Avesani, P., et al.: The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci Data 6(1), 1–13 (2019). https://doi.org/10.1038/s41597-019-0073-y
2. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance Med. 44(4), 625–632 (2000). https://doi.org/10.1002/1522-2594(200010)44:4%3C625::AID-MRM17%3E3.0.CO;2-O
3. Côté, M.A., Garyfallidis, E., Larochelle, H., Descoteaux, M.: Cleaning up the mess: tractography outlier removal using hierarchical QuickBundles clustering. In: Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM) (2015). http://archive.ismrm.org/2015/2844.html
4. Daducci, A., Dal Palù, A., Lemkaddem, A., Thiran, J.P.: COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med. Imag. 34(1), 246–257 (2015). https://doi.org/10.1109/TMI.2014.2352414
5. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019). https://arxiv.org/abs/1903.02428