1. Adler, J., Lunz, S.: Banach wasserstein gan. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc., Red Hook (2018)
2. Alain, G., Bengio, Y., Yao, L., Yosinski, J., Thibodeau-Laufer, E., Zhang, S., Vincent, P.: Gsns: generative stochastic networks. Inf. Inference: J. IMA 5(2), 210–249 (2016). https://doi.org/10.1093/imaiai/iaw003
3. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. OpenReview.net (2017)
4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR (2017)
5. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9, 2019. OpenReview.net (2019)