1. L. Wasserman, All of Statistics: A Concise Course in Statistical Inference (Springer, Berlin, 2004)
2. V. Vapnik, The Nature of Statistical Learning Theory. Information Science and Statistics (Springer, Berlin, 2000)
3. R.E. Schapire, Y. Freund, Boosting Foundations and Algorithms. Adaptive Computation and Machine Learning (MIT Press, Cambridge, 2012)
4. C. Bauckhage, Numpy/Scipy recipes for data science: Kernel least squares optimization (1) (2015). researchgate.net
5. W. Richert, Building Machine Learning Systems with Python (Packt Publishing Ltd., Birmingham, 2013)