Algorithm Assurance: Auditing Applications of Artificial Intelligence

Author:

Boer Alexander,de Beer Léon,van Praat Frank

Abstract

AbstractAlgorithm assurance is a specific form of IT assurance that supports risk management and control on applications of risky algorithms in products and in organizations. These algorithms will often be characterized in organizations as applications of Artificial Intelligence (AI), as advanced analytics, or—simply—as predictive models. The aim of this chapter is to introduce the concept of algorithm assurance, to give some background on the relevance and importance of algorithm assurance, and to prepare the auditor for the basic skills needed to organize and execute an algorithm audit. In this chapter we will introduce the algorithm assurance engagement as a specific type of IT audit. After a general discussion of the background of algorithm assurance and the type of IT applications we are concerned with in this type of engagement, we will extensively discuss the scope of an algorithm assurance engagement, how to approach the risk assessment that should take place initially, how to set up and audit plan, and the audit techniques and tools that play a role in an audit plan.

Publisher

Springer International Publishing

Reference16 articles.

1. Agrawal, A., Pfisterer, F., Bischl, B., Chen, J., Sood, S., Shah, S., Buet-Golfouse, F., Mateen, B. A., & Vollmer, S. J. (2020). Debiasing classifiers: Is reality at variance with expectation? Retrieved from https://ssrn.com/abstract=3711681 or https://doi.org/10.2139/ssrn.3711681

2. Brown, S., Davidovic, J., & Hasan, A. (2021). The algorithm audit: Scoring the algorithms that score us. Big Data & Society, 8(1), 205395172098386. https://doi.org/10.1177/2053951720983865

3. Cheney, J., Chiticariu, L., & Tan, W. C. (2009). Provenance in databases: Why, how, and where. Now Publishers.

4. D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., ... & Sculley, D. (2020). Underspecification presents challenges for credibility in modern machine learning. arXiv preprint arXiv:2011.03395.

5. English, R. (2021, July 26). Discriminatory basis of child tax credit is justified, rules supreme court. UK Human Rights Blog. Retrieved March 23, 2022, from https://ukhumanrightsblog.com/2012/05/17/discriminatory-basis-of-child-tax-credit-is-justified-rules-supreme-court/

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3