1. Agrawal, A., Pfisterer, F., Bischl, B., Chen, J., Sood, S., Shah, S., Buet-Golfouse, F., Mateen, B. A., & Vollmer, S. J. (2020). Debiasing classifiers: Is reality at variance with expectation? Retrieved from https://ssrn.com/abstract=3711681 or https://doi.org/10.2139/ssrn.3711681
2. Brown, S., Davidovic, J., & Hasan, A. (2021). The algorithm audit: Scoring the algorithms that score us. Big Data & Society, 8(1), 205395172098386. https://doi.org/10.1177/2053951720983865
3. Cheney, J., Chiticariu, L., & Tan, W. C. (2009). Provenance in databases: Why, how, and where. Now Publishers.
4. D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., ... & Sculley, D. (2020). Underspecification presents challenges for credibility in modern machine learning. arXiv preprint arXiv:2011.03395.
5. English, R. (2021, July 26). Discriminatory basis of child tax credit is justified, rules supreme court. UK Human Rights Blog. Retrieved March 23, 2022, from https://ukhumanrightsblog.com/2012/05/17/discriminatory-basis-of-child-tax-credit-is-justified-rules-supreme-court/