1. Ingook, J., Donghun, K., Donghun, L., Youngsung, S.,: An agent-based simulation modeling with deep reinforcement learning for smart traffic signal control. In: IEEE International Conference on Information and Communication Technology Convergence, South Korea (2018)
2. Li, N., Oyler, D.W., Zhang, M., Yildiz, Y., Kolmanovsky, I., Girard, A.R.: Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems. IEEE Trans. Control Syst. Technol. 26(5), 1782–1797 (2017)
3. Oyler, D.W., Yildiz, Y., Girard, A.R., Li, N.I., Kolmanovsky, I.V.: A game theoretical model of traffic with multiple interacting drivers for use in autonomous vehicle development. In: IEEE American Control Conference, pp. 1705–1710, Boston (2016)
4. Genders, W., Razavi, S.: Evaluating reinforcement learning state representations for adaptive traffic signal control. Proc. Comput. Sci. 130, 26–33 (2018)
5. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. In: arXiv preprint
arXiv:1707.06347
, pp. 1–12 (2017)