1. Baruch, G., Baruch, M., Goldberg, Y.: A little is enough: circumventing defenses for distributed learning. In: NeurIPS 2019, pp. 8632–8642 (2019)
2. Bhagoji, A.N., Chakraborty, S., Mittal, P., et al.: Analyzing federated learning through an adversarial lens. In: ICML 2019, vol. 97, pp. 634–643 (2019)
3. Bojarski, M., Del Testa, D., Dworakowski, D., et al.: End to end learning for self-driving cars. CoRR arXiv:1604.07316 (2016)
4. Buyval, A., Gabdullin, A., Mystafin, R., et al.: Realtime vehicle and pedestrian tracking for didi udacity self-driving car challenge. In: IEEE ICRA 2018, pp. 2064–2069 (2018)
5. Cao, X., Fang, M., Liu, J., et al.: FLTrust: byzantine-robust federated learning via trust bootstrapping. In: NDSS 2021 (2021)