Fault Tolerant in the Expand Ad-Hoc Parallel File System

Author:

Muñoz-Muñoz DarioORCID,Garcia-Carballeira FelixORCID,Camarmas-Alonso DiegoORCID,Calderon-Mateos AlejandroORCID,Carretero JesusORCID

Abstract

AbstractIn the last years, applications related to Artificial Intelligence and big data, among others, have been involved. There is a need to improve I/O operations to avoid bottlenecks in accessing a larger amount of data. For this purpose, the Expand Ad-Hoc parallel file system is being designed and developed.Since these applications have very long execution times, fault tolerance mechanisms in the file system are necessary to allow them to continue running in the presence of failures.This work introduces a fault-tolerant design based on data replication for the Expand Ad-Hoc parallel file system and an initial evaluation conducted on the HPC4AI Laboratory supercomputer in Torino.The evaluation of Expand Ad-Hoc with fault-tolerant found that, despite data replication, its performance and scalability are generally better than those of other parallel file systems without fault-tolerant.

Publisher

Springer Nature Switzerland

Reference20 articles.

1. BeeGFS: BeeGFS documentation 7.4.2 » architecture (2024). https://doc.beegfs.io/7.4.2/architecture/overview.html#mirroring (Accessed 18 March 2024)

2. Braam, P.: The lustre storage architecture. CoRR arXiv: 1903.01955 (2019)

3. Brinkmann, A., et al.: Ad hoc file systems for high-performance computing. J. Comput. Sci. Technol. 35(1), 4–26 (2020)

4. BSC: MareNostrum specification (2023). https://www.bsc.es/marenostrum/marenostrum/technical-information, (Accessed 18 March 2024)

5. Devarajan, H., Zheng, H., Kougkas, A., Sun, X.H., Vishwanath, V.: Dlio: A data-centric benchmark for scientific deep learning applications. In: 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), vol. 1(81–91) (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3