Author:
Prichard Susan J.,Rowell Eric M.,Hudak Andrew T.,Keane Robert E.,Loudermilk E. Louise,Lutes Duncan C.,Ottmar Roger D.,Chappell Linda M.,Hall John A.,Hornsby Benjamin S.
Abstract
AbstractWildland fuels, defined as the combustible biomass of live and dead vegetation, are foundational to fire behavior, ecological effects, and smoke modeling. Along with weather and topography, the composition, structure and condition of wildland fuels drive fire spread, consumption, heat release, plume production and smoke dispersion. To refine inputs to existing and next-generation smoke modeling tools, improved characterization of the spatial and temporal dynamics of wildland fuels is necessary. Computational fluid dynamics (CFD) models that resolve fire–atmosphere interactions offer a promising new approach to smoke prediction. CFD models rely on three-dimensional (3D) characterization of wildland fuelbeds (trees, shrubs, herbs, downed wood and forest floor fuels). Advances in remote sensing technologies are leading to novel ways to measure wildland fuels and map them at sub-meter to multi-kilometer scales as inputs to next-generation fire and smoke models. In this chapter, we review traditional methods to characterize fuel, describe recent advances in the fields of fuel and consumption science to inform smoke science, and discuss emerging issues and challenges.
Funder
International Programs, US Forest Service
Publisher
Springer International Publishing
Reference149 articles.
1. Agee JK, Huff MH (1987) Fuel succession in a western hemlock/Douglas-fir forest. Can J for Res 17:697–704
2. Ahmadov R, James E, Grell G et al (2019) Forecasting smoke, visibility and smoke-weather interactions using a coupled meteorology-chemistry modeling system: rapid refresh and high-resolution rapid refresh coupled with smoke (RAP/HRRR-Smoke). Geophysical Research Abstracts, EGU2019, 2118605A
3. Albini FA, Reinhardt ED (1995) Modeling ignition and burning rate of large woody natural fuels. Int J Wildland Fire 5:81–91
4. Albini FA, Brown JA, Reinhardt ED, Ottmar RD (1995) Calibration of a large fuel burnout model. Int J Wildland Fire 5:173–192
5. Albini FA (1976) Estimating wildfire behavior and effects (General Technical Report INT-GTR-30). Ogden: U.S. Forest Service, Intermountain Forest and Range Research Station