Author:
Goli Mehran,Drechsler Rolf
Publisher
Springer International Publishing
Reference26 articles.
1. Z. Du, K. Palem, A. Lingamneni, O. Temam, Y. Chen, C. Wu, Leveraging the error resilience of machine-learning applications for designing highly energy efficient accelerators, in Asia and South Pacific Design Automation Conference (ASP-DAC), Singapore (2014), S. 201–206
2. S. Mittal, A survey of techniques for approximate computing, in ACM Computing Surveys (CSUR) (2016), S. 62
3. M. Goli, J. Stoppe, R. Drechsler, Resilience evaluation for approximating SystemC designs using machine learning techniques, in International Symposium on Rapid System Prototyping (RSP), Torino (2018), S. 97–103
4. S. Liu, K. Pattabiraman, T. Moscibroda, B. G. Zorn, Flikker: saving dram refresh-power through critical data partitioning. SIGPLAN Not. 47, 213–224 (2011)
5. A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, D. Grossman, EnerJ: approximate data types for safe and general low-power computation, in ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI (ACM, New York, 2011), S. 164–174