Uncertainty Quantification, Model Calibration and Sensitivity

Author:

Bijak Jakub,Hilton Jason

Abstract

AbstractBetter understanding of the behaviour of agent-based models, aimed at embedding them in the broader, model-based line of scientific enquiry, requires a comprehensive framework for analysing their results. Seeing models as tools for experimenting in silico, this chapter discusses the basic tenets and techniques of uncertainty quantification and experimental design, both of which can help shed light on the workings of complex systems embedded in computational models. In particular, we look at: relationships between model inputs and outputs, various types of experimental design, methods of analysis of simulation results, assessment of model uncertainty and sensitivity, which helps identify the parts of the model that matter in the experiments, as well as statistical tools for calibrating models to the available data. We focus on the role of emulators, or meta-models – high-level statistical models approximating the behaviour of the agent-based models under study – and in particular, on Gaussian processes (GPs). The theoretical discussion is illustrated by applications to the Routes and Rumours model of migrant route formation introduced before.

Publisher

Springer International Publishing

Reference66 articles.

1. Andrianakis, I., Vernon, I. R., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga, R. N., Goldstein, M., & White, R. G. (2015). Bayesian history matching of complex infectious disease models using emulation: A tutorial and a case study on HIV in Uganda. PLoS Computational Biology, 11(1), e1003968.

2. Angione, C., Silverman, E., & Yaneske, E. (2020). Using machine learning to emulate agent-based simulations. Mimeo. arXiv. https://arxiv.org/abs/2005.02077. (as of 1 August 2020)

3. Banks, D., & Norton, J. (2014). Agent-based modeling and associated statistical aspects. In International Encyclopaedia of the Social and Behavioural Sciences (2nd ed., pp. 78–86). Oxford University Press.

4. Bijak, J. (2010). Forecasting international migration in Europe: A Bayesian view. Springer.

5. Bijak, J., & Bryant, J. (2016). Bayesian demography 250 years after Bayes. Population Studies, 70(1), 1–19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3