ConFuzz: Coverage-Guided Property Fuzzing for Event-Driven Programs

Author:

Padhiyar Sumit,Sivaramakrishnan K. C.

Abstract

AbstractBug-free concurrent programs are hard to write due to non-determinism arising out of concurrency and program inputs. Since concurrency bugs typically manifest under specific inputs and thread schedules, conventional testing methodologies for concurrent programs like stress testing and random testing, which explore random schedules, have a strong chance of missing buggy schedules.In this paper, we introduce a novel technique that combines property-based testing with mutation-based, grey box fuzzer, applied to event-driven OCaml programs. We have implemented this technique in , a directed concurrency bug-finding tool for event-driven OCaml programs. Using , programmers specify high-level program properties as assertions in the concurrent program. uses the popular greybox fuzzer AFL to generate inputs as well as concurrent schedules to maximise the likelihood of finding new schedules and paths in the program so as to make the assertion fail. does not require any modification to the concurrent program, which is free to perform arbitrary I/O operations. Our experimental results show that is easy-to-use, effective, detects concurrency bugs faster than Node.Fz - a random fuzzer for event-driven JavaScript programs, and is able to reproduce known concurrency bugs in widely used OCaml libraries.

Publisher

Springer International Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Property-Based Fuzzing for Finding Data Manipulation Errors in Android Apps;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30

2. Automated verification of concurrent go programs via bounded model checking;Automated Software Engineering;2023-08-26

3. Schema-guided Testing of Message-oriented Systems;Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3