AnaXNet: Anatomy Aware Multi-label Finding Classification in Chest X-Ray
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-87240-3_77
Reference34 articles.
1. Lecture Notes in Computer Science;J Cai,2018
2. Chen, B., Li, J., Lu, G., Yu, H., Zhang, D.: Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray image classification. IEEE J. Biomed. Health Inform. 24(8), 2292–2302 (2020)
3. Chen, B., Zhang, Z., Lin, J., Chen, Y., Lu, G.: Two-stream collaborative network for multi-label chest x-ray image classification with lung segmentation. Pattern Recogn. Lett. 135, 221–227 (2020)
4. Filice, R.W., et al.: Crowdsourcing pneumothorax annotations using machine learning annotations on the NIH chest X-ray dataset. J. Digit. Imaging 33(2), 490–496 (2020)
5. Gabruseva, T., Poplavskiy, D., Kalinin, A.: Deep learning for automatic pneumonia detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 350–351 (2020)
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. TL-CCL: Two-level causal contrastive learning for multi-label ocular disease diagnosis with fundus images;Biomedical Signal Processing and Control;2024-09
2. LAGNet: Label Attention Graph Networks for Ocular Disease Classification Using Fundus Images;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27
3. Chest x-ray diagnosis via spatial-channel high-order attention representation learning;Physics in Medicine & Biology;2024-02-13
4. Artificially Generated Visual Scanpath Improves Multilabel Thoracic Disease Classification in Chest X-Ray Images;IEEE Transactions on Instrumentation and Measurement;2024
5. Is one label all you need? Single positive multi-label training in medical image analysis;2023 IEEE International Conference on Big Data (BigData);2023-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3