Author:
Wang Jing,Liu Siyuan,Liu Wenjing,Xu Zhiwei,Zhang Jiaqi,Tian Jie
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Agrawal, S., Goyal, N.: Analinproceedingsysis of Thompson sampling for the multi-armed bandit problem. In: Conference on Learning Theory. JMLR Workshop and Conference Proceedings, pp. 39–1 (2012)
2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)
3. Azar, J., Makhoul, A., Barhamgi, M., Couturier, R.: An energy efficient IoT data compression approach for edge machine learning. Futur. Gener. Comput. Syst. 96, 168–175 (2019)
4. Cui, Q., Gong, Z., Ni, W., Hou, Y., Chen, X., Tao, X., Zhang, P.: Stochastic online learning for mobile edge computing: learning from changes. IEEE Commun. Mag. 57(3), 63–69 (2019)
5. Gallo, M., Kauffmann, B., Muscariello, L., Simonian, A., Tanguy, C.: Performance evaluation of the random replacement policy for networks of caches. ACM SIGMETRICS Perform. Eval. Rev. 40(1), 395–396 (2012)