Publisher
Springer Nature Switzerland
Reference16 articles.
1. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31, 2346–2363 (2019). https://doi.org/10.1109/TKDE.2018.2876857
2. Delen, D.: Introduction to predictive analytics and data mining. In: Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners. Pearson FT Press (2020)
3. Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real-time data mining of non-stationary data streams from sensor networks. Inf. Fusion. 9, 344–353 (2008). https://doi.org/10.1016/j.inffus.2005.05.005
4. Kadwe, Y., Suryawanshi, V.: A review on concept drift. IOSR J. Comput. Eng. 17, 20–26 (2015). https://doi.org/10.9790/0661-17122026
5. Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining : a literature review. J. King Saud Univ. - Comput. Inf. Sci. 34, 9523–9540 (2022). https://doi.org/10.1016/j.jksuci.2021.11.006