1. Abboud, R., İlkan Ceylan, İ., Lukasiewicz, T., Salvatori, T.: Boxe: a box embedding model for knowledge base completion. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., Lin, H.-T. (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 Dec. 2020, virtual (2020)
2. Balazevic, I., Allen, C., Hospedales, T.M.: Tucker: tensor factorization for knowledge graph completion. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 Nov. 2019, pp. 5184–5193. Association for Computational Linguistics (2019)
3. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.), Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held, 5–8 Dec. 2013, Lake Tahoe, Nevada, US, pp. 2787–2795 (2013)
4. Ding, Z., He, B., Ma, Y., Han, Z., Tresp, V.: Learning meta representations of one-shot relations for temporal knowledge graph link prediction (2022). arxiv:abs/2205.10621
5. Ding, Z., Qi, R., Li, Z., He, B., Wu, J., Ma, Y., Meng, Z., Han, Z., Tresp, V.: Forecasting question answering over temporal knowledge graphs (2022). arxiv:abs/2208.06501