Author:
AlKhawaldeh Fatima T.,Yuan Tommy,Kazakov Dimitar
Publisher
Springer International Publishing
Reference49 articles.
1. Peldszus, A., Stede, M.: Joint prediction in MST-style discourse parsing for argumentation mining. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, no. September, pp. 938–948 (2015). https://doi.org/10.18653/v1/d15-1110
2. Cocarascu, O., Toni, F.: Identifying attack and support argumentative relations using deep learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, vol. September 7, pp. 1374–1379 (2017). https://doi.org/10.18653/v1/d17-1144
3. Lippi, M., Torroni, P.: Context-independent claim detection for argument mining. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligent (IJCAI 2015), vol. January, pp. 185–191 (2015)
4. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 632–642 (2015). https://doi.org/10.18653/v1/d15-1075
5. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, EMNLP 2014, no. October, pp. 46–56 (2014). https://doi.org/10.3115/v1/d14-1006