Predicting Resource Usage in Edge Computing Infrastructures with CNN and a Hybrid Bayesian Particle Swarm Hyper-parameter Optimization Model
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-80126-7_40
Reference31 articles.
1. Rahmanian, A.A., Ghobaei-Arani, M., Tofighy, S.: A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment. Futur. Gener. Comput. Syst. 79, 54–71 (2018). https://doi.org/10.1016/j.future.2017.09.049
2. Amiri, M., Mohammad-Khanli, L.: Survey on prediction models of applications for resources provisioning in cloud. J. Netw. Comput. Appl. 82, 93–113 (2017). https://doi.org/10.1016/j.jnca.2017.01.016
3. Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., Chen, J.: An adaptive prediction approach based on workload pattern discrimination in the cloud. J. Netw. Comput. Appl. 80, 35–44 (2017). https://doi.org/10.1016/j.jnca.2016.12.017. ISSN 1084–8045
4. Calzarossa, M.C., Massari, L., Tessera, D.: Workload characterization: a survey revisited. ACM Comput. Surv. 48(3), 1–43 (2016). https://doi.org/10.1145/2856127. Article 48
5. Kousiouris, G., Cucinotta, T., Varvarigou, T.: The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction through optimized artificial neural networks. J. Syst. Softw. 84(8), 1270–1291 (2011). https://doi.org/10.1016/j.jss.2011.04.013. ISSN 0164-1212
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing energy efficiency in MEC networks: a deep learning approach with Cybertwin-driven resource allocation;Journal of Cloud Computing;2024-08-03
2. A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network;Computer Modeling in Engineering & Sciences;2024
3. DRUDGE: Dynamic Resource Usage Data Generation for Extreme Edge Devices;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04
4. RUMP: Resource Usage Multi-Step Prediction in Extreme Edge Computing;Computer Communications;2023-10
5. Enabling All In-Edge Deep Learning: A Literature Review;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3