Nanomechanics of Aggrecan: A New Perspective on Cartilage Biomechanics, Disease and Regeneration

Author:

Wang Chao,Kahle Elizabeth R.,Li Qing,Han Lin

Abstract

AbstractArticular cartilage is a hydrated macromolecular composite mainly composed of type II collagen fibrils and the large proteoglycan, aggrecan. Aggrecan is a key determinant of the load bearing and energy dissipation functions of cartilage. Previously, studies of cartilage biomechanics have been primarily focusing on the macroscopic, tissue-level properties, which failed to elucidate the molecular-level activities that govern cartilage development, function, and disease. This chapter provides a brief summary of Dr. Alan J. Grodzinsky’s seminal contribution to the understanding of aggrecan molecular mechanics at the nanoscopic level. By developing and applying a series of atomic force microscopy (AFM)-based nanomechanical tools, Grodzinsky and colleagues revealed the unique structural and mechanical characteristics of aggrecan at unprecedented resolutions. In this body of work, the “bottle-brush”-like ultrastructure of aggrecan was directly visualized for the first time. Meanwhile, molecular mechanics of aggrecan was studied using a physiological-like 2D biomimetic assembly of aggrecan on multiple fronts, including compression, dynamic loading, shear, and adhesion. These studies not only generated new insights into the development, aging, and disease of cartilage, but established a foundation for designing and evaluating novel cartilage regeneration strategies. For example, building on the scientific foundation and methodology infrastructure established by Dr. Grodzinsky, recent studies have elucidated the roles of other proteoglycans in mediating cartilage integrity, such as decorin and perlecan, and evaluated the therapeutic potential of biomimetic proteoglycans in improving cartilage regeneration.

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3