Understanding the Influence of Local Physical Stimuli on Chondrocyte Behavior

Author:

Kim Byumsu,Bonassar Lawrence J.

Abstract

AbstractInvestigating the mechanobiology of chondrocytes is challenging due to the complex micromechanical environment of cartilagetissue. The innate zonal differences and poroelastic properties of the tissue combined with its heterogeneous composition create spatial- and temporal-dependent cell behavior, which further complicates the investigation. Despite the numerous challenges, understanding the mechanobiology of chondrocytes is crucial for developing strategies for treating cartilage related diseases as chondrocytes are the only cell type within the tissue. The effort to understand chondrocyte behavior under various mechanical stimuli has been ongoing over the last 50 years. Early studies examined global biosynthetic behavior under unidirectional mechanical stimulus. With the technological development in high-speed confocal imaging techniques, recent studies have focused on investigating real-time individual and collective cell responses to multiple / combined modes of mechanical stimuli. Such efforts have led to tremendous advances in understanding the influence of local physical stimuli on chondrocyte behavior. In addition, we highlight the wide variety of experimental techniques, spanning from static to impact loading, and analysis techniques, from biochemical assays to machine learning, that have been utilized to study chondrocyte behavior. Finally, we review the progression of hypotheses about chondrocyte mechanobiology and provide a perspective on the future outlook of chondrocyte mechanobiology.

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3