1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)
2. Angelina Uy, M., Pham, Q.H., Hua, B.S., Thanh Nguyen, D., Yeung, S.K.: Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. arXiv, arXiv-1908 (2019)
3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
4. Dong, G., Liao, G., Liu, H., Kuang, G.: A review of the autoencoder and its variants: a comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geosci. Remote Sens. Mag. 6(3), 44–68 (2018)
5. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learning advances in computer vision with 3D data: a survey. ACM Comput. Surv. (CSUR) 50(2), 1–38 (2017)