Stress Strain Curves

Author:

Sandström Rolf

Abstract

AbstractTraditionally, stress strain curves for example from tensile testing are described with empirical models with a number of adjustable parameters such as Hollomon, Ludwik, Voce and Swift. With such models it is difficult or impossible to generalize and extrapolate. A model in the form of Voce equation is derived from the same basic dislocation model used for the creep models with the values of constants computed. The derived model is used to describe stress strain curves for Cu including their temperature and strain rate dependence. The dynamic recovery constant ω plays a central to show how the work hardening deviates from a linear behaviour. The temperature dependence of ω is analyzed and shown to be related to that of the shear modulus. In the literature it is frequently assumed that dynamic recovery is controlled by cross-slip. However, the measured activation energy for dynamic recovery is many times smaller than the energy required to make partial dislocations brought together and form a constriction, which is necessary to enable cross-slip, so this is an unlikely possibility.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3