Cavitation

Author:

Sandström Rolf

Abstract

AbstractCavitation is of great technical importance. Nucleated cavities grow and link to form cracks that can cause rupture. During creep, cavities are initiated in the grain boundaries. The nucleation takes place at particles or at subboundary—grain boundary junctions. The main mechanism is believed to be grain boundary sliding (GBS), Chap. 9. According to the double ledge model, cavities are formed when the particles or subboundaries meet other subboundaries. With this assumption quantitative models for cavity nucleation can be derived. They show that the nucleated number of cavities is proportional to the creep strain in good accordance with observations. Cavities can grow by diffusion or by straining. It is important to take into account that cavities cannot grow faster than the surrounding creeping matrix, which is referred to as constrained growth. Otherwise the growth rate can be significantly overestimated. Models both for diffusion and strain controlled growth have been available for a long time. A recently developed model for strain controlled growth is presented based on GBS. It has the advantage that is associated with a well-defined initiation size of cavities and that constrained growth is automatically taken into account, features that some previous strain controlled models miss.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3