1. Bruch, S., Han, S., Bendersky, M., Najork, M.: A stochastic treatment of learning to rank scoring functions. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 61–69. ACM (2020)
2. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. In: Proceedings of the Yahoo! Learning to Rank Challenge, Held at ICML. JMLR Proceedings, vol. 14, pp. 1–24. JMLR.org (2011)
3. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: NeuIPS, pp. 1269–1277 (2014)
4. Diaz, F., Mitra, B., Ekstrand, M.D., Biega, A.J., Carterette, B.: Evaluating stochastic rankings with expected exposure. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 275–284. ACM (2020)
5. Gumbel, E.J.: Statistical theory of extreme values and some practical applications: a series of lectures, vol. 33. US Government Printing Office (1954)