Author:
Viegas Eduardo K.,de Matos Everton,de Oliveira Paulo R.,Santin Altair O.
Publisher
Springer International Publishing
Reference21 articles.
1. Andresini, G., Appice, A., Loglisci, C., Belvedere, V., Redavid, D., Malerba, D.: A network intrusion detection system for concept drifting network traffic data. In: Soares, C., Torgo, L. (eds.) Discovery Science, pp. 111–121. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-88942-5_9
2. Andresini, G., Pendlebury, F., Pierazzi, F., Loglisci, C., Appice, A., Cavallaro, L.: INSOMNIA. In: Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security. ACM (2021). https://doi.org/10.1145/3474369.3486864
3. Arp, D., et al.: Dos and don’ts of machine learning in computer security. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 3971–3988. USENIX Association, Boston, MA (2022). https://www.usenix.org/conference/usenixsecurity22/presentation/arp
4. Chkirbene, Z., Erbad, A., Hamila, R., Mohamed, A., Guizani, M., Hamdi, M.: Tidcs: a dynamic intrusion detection and classification system based feature selection. IEEE Access 8, 95864–95877 (2020)
5. Gates, C., Taylor, C.: Challenging the anomaly detection paradigm: a provocative discussion. In: Proceedings of the Workshop on New Security Paradigms (NSPW), pp. 21–29 (2006)