Author:
Breen Jack,Zucker Kieran,Allen Katie,Ravikumar Nishant,Orsi Nicolas M.
Publisher
Springer International Publishing
Reference64 articles.
1. Ahmed, A. A., Abouzid, M., & Kaczmarek, E. (2022). Deep learning approaches in histopathology. Cancers, 14(21), 5264.
2. Altini, N., Marvulli, T. M., Zito, F. A., Caputo, M., Tommasi, S., Azzariti, A., Brunetti, A., Prencipe, B., Mattioli, E., De Summa, S., & et al. (2023). The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification. Computer Methods and Programs in Biomedicine, 107511.
3. Aubreville, M., Bertram, C.A., Breininger, K., Jabari, S., Stathonikos, N., & Veta, M. (2022). Mitosis domain generalization challenge 2022. In 25th International conference on medical image computing and computer assisted intervention (MICCAI).
4. Aubreville, M., Stathonikos, N., Bertram, C. A., Klopfleisch, R., Ter Hoeve, N., Ciompi, F., Wilm, F., Marzahl, C., Donovan, T. A., Maier, A., et al. (2023). Mitosis domain generalization in histopathology images-the MIDOG challenge. Medical Image Analysis, 84, 102699.
5. Baidoshvili, A., Bucur, A., van Leeuwen, J., van der Laak, J., Kluin, P., & van Diest, P. J. (2018). Evaluating the benefits of digital pathology implementation: Time savings in laboratory logistics. Histopathology, 73(5), 784–794.