1. Abu-Srhan, A., Abushariah, M. A. M., & Al-Kadi, O. S. (2022). The effect of loss function on conditional generative adversarial networks. Journal of King Saud University—Computer and Information Sciences 34(9). https://doi.org/10.1016/j.jksuci.2022.02.018.
2. Ahn, G., Choi, B. S., Ko, S., Jo, C., Han, H. S., Lee, M. C., & Ro, D. H. (2023). High-resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation. Journal of Orthopaedic Research, 41(1), 84–93. https://doi.org/10.1002/jor.25325
3. Alrashedy, H. H. N., Almansour, A. F., Ibrahim, D. M., & Hammoudeh, M. A. A. (2022). BrainGAN: Brain MRI image generation and classification framework using GAN architectures and CNN models. Sensors 22(11). https://doi.org/10.3390/s22114297.
4. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In 34th international conference on machine learning, ICML 2017, pp. 298–321
5. Bau, D., Zhu, J. Y., Strobelt, H., Zhou, B., Tenenbaum, J. B., Freeman, W. T., & Torralba, A. (2019). GaN dissection: Visualizing and understanding generative adversarial networks. In 7th international conference on learning representations, ICLR 2019, pp. 1–18.