Resourceful Program Synthesis from Graded Linear Types

Author:

Hughes JackORCID,Orchard DominicORCID

Abstract

AbstractLinear types provide a way to constrain programs by specifying that some values must be used exactly once. Recent work on graded modal types augments and refines this notion, enabling fine-grained, quantitative specification of data use in programs. The information provided by graded modal types appears to be useful for type-directed program synthesis, where these additional constraints can be used to prune the search space of candidate programs. We explore one of the major implementation challenges of a synthesis algorithm in this setting: how does the synthesis algorithm efficiently ensure that resource constraints are satisfied throughout program generation? We provide two solutions to this resource management problem, adapting Hodas and Miller’s input-output model of linear context management to a graded modal linear type theory. We evaluate the performance of both approaches via their implementation as a program synthesis tool for the programming language Granule, which provides linear and graded modal typing.

Publisher

Springer International Publishing

Reference36 articles.

1. Logic programming with linear logic. http://www.cs.rmit.edu.au/lygon/, Accessed 19 June 2020

2. Allais, G.: Typing with leftovers-a mechanization of intuitionistic multiplicative-additive linear logic. In: 23rd International Conference on Types for Proofs and Programs (TYPES 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

3. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

4. Lecture Notes in Computer Science;A Brunel,2014

5. Bucciarelli, A., Kesner, D., Rocca, S.R.D.: Inhabitation for non-idempotent intersection types. Log. Methods Comput. Sci. 14(3) (2018). https://doi.org/10.23638/LMCS-14(3:7)2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework;Proceedings of the ACM on Programming Languages;2023-01-09

2. Deriving Distributive Laws for Graded Linear Types;Electronic Proceedings in Theoretical Computer Science;2021-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3