TPUAR-Net: Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-27272-2_9
Reference19 articles.
1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 68(1), 7–30 (2018). https://doi.org/10.3322/caac.21442
2. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/j.media.2016.05.004
3. Communications in Computer and Information Science;MK Abd-Ellah,2016
4. Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A.: Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP J. Image Video Process. 2018(1), 97 (2018). https://doi.org/10.1186/s13640-018-0332-4
5. Soltaninejad, M., et al.: Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int. J. Comput. Assist. Radiol. Surg. 12(2), 183–203 (2017). https://doi.org/10.1007/s11548-016-1483-3
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel residual fourier convolution model for brain tumor segmentation of mr images;Pattern Analysis and Applications;2024-09-09
2. Automatic brain-tumor diagnosis using cascaded deep convolutional neural networks with symmetric U-Net and asymmetric residual-blocks;Scientific Reports;2024-04-25
3. Comparing Deep Learning Performance for Chronic Lymphocytic Leukaemia Cell Segmentation in Brightfield Microscopy Images;Bioinformatics and Biology Insights;2024-01
4. Brain Tumour Detection Using Stacked Deep Learning Approaches;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16
5. Advances in Brain Tumor Segmentation and Skull Stripping: A 3D Residual Attention U-Net Approach;Traitement du Signal;2023-10-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3