1. Abels, A., Roijers, D., Lenaerts, T., Nowé, A., Steckelmacher, D.: Dynamic weights in multi-objective deep reinforcement learning. In: International Conference on Machine Learning, pp. 11–20. PMLR (2019)
2. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 22–31. PMLR (2017). http://proceedings.mlr.press/v70/achiam17a.html
3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. (TOMACS) 28(1), 1–39 (2018)
4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. CoRR arXiv:1708.08611 (2017)
5. Altman, E.: Constrained markov decision processes with total cost criteria: Lagrangian approach and dual linear program. Math. Methods Oper. Res. 48(3), 387–417 (1998)