1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)
2. Alvarez-Melis, D., Jaakkola, T.S.: Towards robust interpretability with self-explaining neural networks. arXiv preprint arXiv:1806.07538 (2018)
3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. ProPublica (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
4. Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. arXiv preprint arXiv:1909.03012 (2019)
5. Bartlett, J.M., et al.: Mammostrat® as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer Res. 12(4), 1–11 (2010)