Author:
Qiang Kejia,Li Jie,Zhang Jinghong,Li Jiaqi,Ran Ling,Zhang Hongliang
Publisher
Springer Nature Switzerland
Reference14 articles.
1. Thonstad, J., Utigard, T. A., & Vogt, H. (2016). On the anode effect in aluminum electrolysis. Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology, 131–138.
2. Sun, B., Dai, J., Huang, K., Yang, C., & Gui, W. (2022). Smart manufacturing of nonferrous metallurgical processes: Review and perspectives. International Journal of Minerals, Metallurgy and Materials, 29(4), 611–625.
3. Li, J., Ding, F. Q., Li, M. J., Xiao, J., & Zou, Z. (2001). Intelligent anode effect prediction method for prebaked-anode aluminum reduction cells. Journals of Central South University of Technology, Vol 32, (1), 32.
4. Yao, Y., Bao, J., Skyllas-Kazacos, M., Welch, B. J., & Akhmetov, S. (2018). Fault detection and diagnosis in Hall–Héroult cells based on individual anode current measurements using dynamic kernel PCA. Metallurgical and Materials Transactions B, 49, 2077–2088.
5. Zhou, K., Xu, G., & Guo, S. (2017). Anode effect prediction based on support vector machine and K nearest neighbor. In 2017 Chinese Automation Congress (CAC) (pp. 341–345). IEEE.