Author:
Mohamed El Ghali,Issam Atouf,Mohamed Talea
Publisher
Springer Nature Switzerland
Reference14 articles.
1. Fei, M., Yeung, D.Y.: Temporal models for predicting student dropout in massive open online courses. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 256–263. IEEE (2015)
2. Gardner, J., Brooks, C.: Student success prediction in MOOCs. User Model. User-Adap. Inter. 28, 127–203 (2018)
3. Marbouti, F., Diefes-Dux, H.A., Madhavan, K.: Models for early prediction of at-risk students in a course using standards-based grading. Comput. Educ. 103, 1–15 (2016)
4. Al-Musharraf, A., Alkhattabi, M.: An educational data mining approach to explore the effect of using interactive supporting features in an LMS for overall performance within an online learning environment. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 16(3), 1 (2016)
5. Conijn, R., Snijders, C., Kleingeld, A., Matzat, U.: Predicting student performance from LMS data: a comparison of 17 blended courses using Moodle LMS. IEEE Trans. Learn. Technol. 10(1), 17–29 (2016)