1. Seneviratne, S., Daskalaki, E., Lenskiy, A., Suominen, H.: m-Networks: Adapting the Triplet Networks for Acronym Disambiguation. In: Proceedings of the 4th Clinical Natural Language Processing Workshop, pp. 21–29 (2022)
2. Ben Veyseh, A.P., Dernoncourt, F., Chang, W., Nguyen, T.H.: MadDog: A web-based system for acronym identification and disambiguation. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pp. 160–167. Online. Association for Computational Linguistics (2021)
3. Wen, Z., Lu, X.H., Reddy, S.: MeDAL: medical abbreviation disambiguation dataset for natural language understanding pretraining. In: Proceedings of the 3rd Clinical Natural Language Processing Workshop (2020). https://doi.org/10.18653/v1/2020.clinicalnlp-1.15
4. Kacker, P., Cupallari, A., Subramanian, A.G., Jain, N.: ABB-BERT: A BERT model for disambiguating abbreviations and contractions. In: Proceedings of the 18th International Conference on Natural Language Processing (2022). https://doi.org/10.48550/ARXIV.2207.04008
5. Nair, R., Prasad, V.N.V., Sreenadh, A., Nair, J.J.: Coreference Resolution for Ambiguous Pronoun with BERT and MLP. In: 2021 International Conference on Advances in Computing and Communications (ICACC), pp. 1–5. Kochi, Kakkanad, India (2021). https://doi.org/10.1109/ICACC-202152719.2021.9708203