Publisher
Springer Nature Switzerland
Reference13 articles.
1. Sprager, S., Juric, M.B.: Inertial sensor-based gait recognition: a review. Sensors 15(9), 22089-127 (2015). https://doi.org/10.3390/s150922089
2. Delgado-Escano, R., Castro, F.M., Cozar, J.R., et al.: An end-to-end multi-task and fusion CNN for inertial-based gait recognition. IEEE Access 7, 1897–1908 (2019)
3. Li, X., Luo, J., Younes, R.: ActivityGAN: generative adversarial networks for data augmentation in sensor-based human activity recognition. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers (UbiComp/ISWC 2020 Adjunct), pp. 249–254 (2020). https://doi.org/10.1145/3410530.3414367
4. Desai, A., Freeman, C., Wang, Z., et al.: Timevae: a variational auto-encoder for multivariate time series generation. arXiv:2111.08095 (2021)
5. Chadebec, C., Thibeau-Sutre, E., Burgos, N., et al.: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder. arXiv:2105.00026 (2021)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generation Of Synthetic Data for Behavioral Gait Biometrics;International Conference on Information Systems Development;2024-09-09