Author:
Chang Jiayu,Liang Tian,Xiao Wanzhi,Kuang Li
Publisher
Springer Nature Switzerland
Reference22 articles.
1. Wang, Y., Yin, H., Chen, H., Wo, T., Xu, J., Zheng, K.: Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2019), pp. 1227–1235. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3292500.3330877
2. Tamin, O., Willumsen, L.: Transport demand model estimation from traffic counts. Transportation 16(1), 3–26 (1989)
3. Cascetta, E., Nguyen, S.: A unified framework for estimating or updating origin/destination matrices from traffic counts. Transp. Res. Part B Methodol. 22(6), 437–455 (1988)
4. Zhou, X., Mahmassani, H.S.: Dynamic origin-destination demand estimation using automatic vehicle identification data. TITS 7(1), 105–114 (2006)
5. Tamin, O.Z., Hidayat, H., Indriastuti, A.K.: The development of maximum-entropy (ME) and Bayesian-inference (BI) estimation methods for calibrating transport demand models based on link volume information. In: EASTS, vol. 4, pp. 630–647 (2003)