Author:
Qureshi Ayyaz-ul-Haq,Larijani Hadi,Ahmad Jawad,Mtetwa Nhamoinesu
Publisher
Springer International Publishing
Reference20 articles.
1. Conti, M., Dehghantanha, A., Franke, K., Watson, S.: Internet of Things security and forensics: challenges and opportunities. Future Gener. Comput. Syst. 78, 544–546 (2018).
https://www.sciencedirect.com/science/article/pii/S0167739X17316667
2. Saeed, A., Ahmadinia, A., Javed, A., Larijani, H.: Intelligent intrusion detection in low-power IoTs. ACM Trans. Internet Technol. 16(4), 1–25 (2016).
http://dl.acm.org/citation.cfm?doid=3023158.2990499
3. Moustafa, N., Creech, G., Slay, J., Moustafa, N., Creech, G., Slay, J.: Big data analytics for intrusion detection system: statistical decision-making using finite Dirichlet mixture models (2017).
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/
4. Qureshi, A.U.H., Larijani, H., Ahmad, J., Mtetwa, N.: A novel random neural network based approach for intrusion detection systems. In: 2018 IEEE 10th International Computer Science and Electronic Engineering Conference (CEEC). IEEE, September 2018
5. Aljawarneh, S., Aldwairi, M., Yassein, M.B.: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 25, 152–160 (2018).
https://linkinghub.elsevier.com/retrieve/pii/S1877750316305099
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献