1. Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domain-adversarial neural networks. arXiv: 1412.4446v2 [stat.ML] (2014). http://arxiv.org/pdf/1412.4446v2
2. Arendt, K., Johansen, A., Jørgensen, B. N., et al.: Room-level occupant counts, airflow and CO 2 data from an office building. In: Gao, J., Zhang, P., Pan, S., Ni, C.-C. (eds.) First Workshop on Data Acquisition to Analysis, New York, USA, pp. 13–14 (2018). https://doi.org/10.1145/3277868.3277875
3. Da Costa, P.R.d.O., Akcay, A., Zhang, Y., Kaymak, U.: Remaining useful lifetime prediction via deep domain adaptation. arXiv:1907.07480v1 [cs.LG] (2019). http://arxiv.org/pdf/1907.07480v1
4. Farshchian, A., Gallego, J.A., Cohen, J.P., Bengio, Y., Miller, L.E., Solla, S.A.: Adversarial domain adaptation for stable brain-machine interfaces. arXiv: 1810.00045v2 [cs.LG] (2019). http://arxiv.org/pdf/1810.00045v2
5. Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Transfer learning for time series classification. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1367–1376 (2018). https://doi.org/10.1109/BigData.2018.8621990