Improving Shop Floor-Near Production Management Through Data-Driven Insights

Author:

Schmitt R. H.,Kiesel R.,Buschmann D.,Cramer S.,Enslin C.,Fischer M.,Gries T.,Hopmann Ch.,Huebser L.,Janke T.,Kemmerling M.,Müller K.,Pelzer L.,Perau M.,Pourbafrani M.,Samsonov V.,Schlegel P.,Schopen M.,Schuh G.,Schulze T.,van der Aalst W. M. P.

Abstract

AbstractIn short-term production management of the Internet of Production (IoP) the vision of a Production Control Center is pursued, in which interlinked decision-support applications contribute to increasing decision-making quality and speed. The applications developed focus in particular on use cases near the shop floor with an emphasis on the key topics of production planning and control, production system configuration, and quality control loops.Within the Predictive Quality application, predictive models are used to derive insights from production data and subsequently improve the process- and product-related quality as well as enable automated Root Cause Analysis. The Parameter Prediction application uses invertible neural networks to predict process parameters that can be used to produce components with desired quality properties. The application Production Scheduling investigates the feasibility of applying reinforcement learning to common scheduling tasks in production and compares the performance of trained reinforcement learning agents to traditional methods. In the two applications Deviation Detection and Process Analyzer, the potentials of process mining in the context of production management are investigated. While the Deviation Detection application is designed to identify and mitigate performance and compliance deviations in production systems, the Process Analyzer concept enables the semi-automated detection of weaknesses in business and production processes utilizing event logs.With regard to the overall vision of the IoP, the developed applications contribute significantly to the intended interdisciplinary of production and information technology. For example, application-specific digital shadows are drafted based on the ongoing research work, and the applications are prototypically embedded in the IoP.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3