Managing Growing Uncertainties in Long-Term Production Management

Author:

Schuh Günther,Gützlaff Andreas,Rodemann Niklas,Pütz Sebastian,Linnartz Maria,Kim Soo-Yon,Schlosser Tino X.,Schupp Steffen,Endrikat Morten,Welsing Martin,Millan Michael,Nitsch Verena,Decker Stefan,Geisler Sandra,Stich Volker

Abstract

AbstractLong-term production management defines the future production structure and ensures the long-term competitiveness. Companies around the world currently have to deal with the challenge of making decisions in an uncertain and rapidly changing environment. The quality of decision-making suffers from the rapidly changing global market requirements and the uniqueness and infrequency with which decisions are made. Since decisions in long-term production management can rarely be reversed and are associated with high costs, an increase in decision quality is urgently needed. To this end, four different applications are presented in the following, which support the decision process by increasing decision quality and make uncertainty manageable. For each of the applications presented, a separate digital shadow was built with the objective of being able to make better decisions from existing data from production and the environment. In addition, a linking of the applications is being pursued:The Best Practice Sharing App creates transparency about existing production knowledge through the data-based identification of comparable production processes in the production network and helps to share best practices between sites. With the Supply Chain Cockpit, resilience can be increased through a data-based design of the procurement strategy that enables to manage disruptions. By adapting the procurement strategy for example by choosing suppliers at different locations the impact of disruptions can be reduced. While the Supply Chain Cockpit focuses on the strategy and decisions that affect the external partners (e.g., suppliers), the Data-Driven Site Selection concentrates on determining the sites of the company-internal global production network by creating transparency in the decision process of site selections. Different external data from various sources are analyzed and visualized in an appropriate way to support the decision process. Finally, the issue of sustainability is also crucial for successful long-term production management. Thus, the Sustainable Footprint Design App presents an approach that takes into account key sustainability indicators for network design.

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Human-Centered Best Practice Sharing in Global Production Networks for More Socially Sustainable Production Processes;2023 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC);2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3