Author:
Rajaei Ali,Becker Marco,Deng Yuanbin,Schenk Oliver,Rooein Soheil,de Oliveira Löhrer Patricia,Reinisch Niklas,Viehmann Tarik,Abouridouane Mustapha,Fernández Mauricio,Broeckmann Christoph,Bergs Thomas,Hirt Gerhard,Lakemeyer Gerhard,Schmitz Georg
Abstract
AbstractIn this chapter, the focus lies on a predictive description of the material response to the thermomechanical loads within different process steps by means of physical and data-driven models. The modeling approaches are demonstrated in examples of innovative production technologies for components of a drive chain: Fine blanking of parts; powder metallurgical (PM) production of gears; open-die forging and machining of drive shafts. In fine blanking, material, process, and quality data are acquired to model interactions between process and material with data-driven methods. Interpretable machine learning is utilized to non-destructively characterize the initial material state, enabling an optimization of process parameters for a given material state in the long-term. The PM process chain of the gear includes sintering, pressing, surface densification, case hardening, and finishing by grinding. Several modeling and characterization approaches are applied to quantitatively describe the microstructure evolutions in terms of porosity during sintering, density profile after cold rolling, hardness and residual stresses after heat treating and grinding and the tooth root load bearing capacity. In the example of the open-die forging, a knowledge-based approach is developed to support the decision-making process regarding the choice of the proper material and optimized pass schedules. Considering the microstructure of the forged shaft, the elastoplastic material behavior is described by a dislocation-based, multiscale modeling approach. On this basis, process simulations could be carried out to predict the process forces, chip form, residual stresses, and the tool life among other output data.
Publisher
Springer International Publishing
Reference42 articles.
1. Abouridouane M, Laschet G, Kripak V, Dierdorf J, Prahl U, Wirtz G, Bergs T (2019) Microstructure-based approach to predict the machinability of the ferritic-pearlitic steel C60 by cutting operations. Procedia CIRP 82:107–112. https://doi.org/10.1016/j.procir.2019.04.013
2. Aravind U, Chakkingal U, Venugopal P (2021) A review of fine blanking: influence of die design and process parameters on edge quality. J Mater Eng Perform 30:1–32
3. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184
4. Azuri I, Weinshall D (2020) Generative latent implicit conditional optimization when learning from small sample. In: 25th International Conference on Pattern Recognition (ICPR). IEEE, Milan, pp 8584–8591
5. Barbosa C, Do Nascimento JL, Caminha IMV, de Cerqueira Abud I, de Carvalho SS (2011) A microstructural and fractographic study on the failure of a drive shaft. J Fail Anal Prev 11:693–699