Author:
Schuh Günther,Tittel Jonas,Amft André,Apelt Sebastian,Bergs Thomas,Boßmann Carsten,Brecher Christian,Brettel Malte,Briele Kristof,Flemisch Frank,Jacobs Georg,Jagla Patrick,Jansen Nico,Kuhn Maximilian,Meißner Maximilian,Perau Stefan,Piller Frank,Preutenborbeck Michael,Rey Markus,Rumpe Bernhard,Schmitt Robert,Wiesch Marian
Abstract
AbstractThe work stream CRD-C.I of the Cluster of Excellence Internet of Production focuses on the topic of agile product development in order to enable reduced lead-times as well as exceeded customer and user satisfaction in product development. The main emphasis of the research lies on the associated processes and structures. In the course of the first 3 years of the Internet of Production, answers to relevant research questions of agile product development were developed within and between the research areas of market development, organization, data and engineering as well as production of prototypes. This chapter presents selected focus areas and insights from these research areas.
Publisher
Springer International Publishing
Reference25 articles.
1. Altintaş Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I (2014) Virtual process systems for part machining operations. CIRP Ann 63(2):585–605
2. Ays J, Dölle C, Schuh G (2018) Constitutive features of agile and plan-driven processes in hybrid product development. In: Schmitt R, Schuh G (eds) Advances in production research. Springer, Cham, pp 477–486
3. Bergs T, Apelt S, Beckers A, Barth S (2021) Agile ramp-up production as an advantage of highly iterative product development. Manuf Lett 27:4–7
4. Brecher C, Biernat B, Fey M, Kehne S, Lohrmann V, Spierling R, Wiesch M (2021) Data science in production. In: Brecher C, Biernat B, Fey M, Kehne S, Lohrmann V, Spierling R, Wiesch M (eds) Aachener Werkzeugmaschinen-Kolloquium (AWK) 2021, Aachen, 2021. Internet of production. Turning data into sustainability. Apprimus, Aachen, pp 221–258
5. Brecher C, Lohrmann V, Wiesch M, Fey M (2022) Clustering zur bestimmung von werkzeugverschleiß: hybride modellierung durch automatisches clustering von prozessverhalten zur vorhersage von werkzeugverschleiß bei der fräsbearbeitung. Zeitschrift für wirtschaftlichen Fabrikbetrieb: 117(4):218–223. https://doi.org/10.1515/zwf-2022-1027