1. Burdakov, A.V., et al.: Forecasting of influenza-like illness incidence in amur region with neural networks. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds.) Advances in Neural Computation, Machine Learning, and Cognitive Research II. NEUROINFORMATICS 2018. Studies in Computational Intelligence, vol. 799. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01328-8_37
2. Eroshenkova, D.A., et al.: Automated determination of forest-vegetation characteristics with the use of a neural network of deep learning. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds.) Advances in Neural Computation, Machine Learning, and Cognitive Research III. NEUROINFORMATICS 2019. Studies in Computational Intelligence, vol. 856. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30425-6_34
3. Proletarskiy, A.V., et al.: Podkhod k sozdaniyu gibridnoy intellektual’noy sistemy opredeleniya mestopolozheniya obyektov po ikh fotografiyam. Neyrokomp’yutery: raz-rabotka, primeneniye 1, 30–39 (2019)
4. Terekhov, V.I., et al.: Predobrabotka SAR izobrazheniy dlya analiza ledovoy obsta-novki metodami glubokogo obucheniya. XXI Mezhdunarodnaya Nauchno-Tekhnicheskaya Konferentsiya Neyroinformatika-2019 (2019)
5. Zabelina, V.A., Savchenko, G.A., Terekhov, V.I.: Raspoznavaniye vida i stadii rosta sornyakovykh rasteniy s pomoshch'yu svertochnoy neyronnoy seti. Neyrokomp'yutery i ikh primeneniye (2020)