Publisher
Springer Nature Switzerland
Reference33 articles.
1. Cai, J., et al.: MeMOT: multi-object tracking with memory. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8090–8100 (2022)
2. Chu, P., Wang, J., You, Q., Ling, H., Liu, Z.: TransMOT: spatial-temporal graph transformer for multiple object tracking. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4870–4880 (2023)
3. Dendorfer, P., et al.: MOT20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)
4. Galor, A., Orfaig, R., Bobrovsky, B.Z.: Strong-transcenter: improved multi-object tracking based on transformers with dense representations. arXiv preprint arXiv:2210.13570 (2022)
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)