Author:
Guo Fusen,Wu Jian-Zhang,Pan Lei
Publisher
Springer Nature Switzerland
Reference22 articles.
1. Azeem, A., Ismail, I., Jameel, S.M., Harindran, V.R.: Electrical load forecasting models for different generation modalities: a review. IEEE Access 9, 142239–142263 (2021). https://doi.org/10.1109/ACCESS.2021.3120731
2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939785
3. Deng, X., et al.: Bagging-XGBoost algorithm based extreme weather identification and short-term load forecasting model. Energy Rep. 8, 8661–8674 (2022). https://doi.org/10.1016/j.egyr.2022.06.072. https://www.sciencedirect.com/science/article/pii/S2352484722012124
4. Fan, C., Xiao, F., Wang, S.: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 127, 1–10 (2014)
5. Ganguly, P., Kalam, A., Zayegh, A.: Short term load forecasting using fuzzy logic. In: Proceedings of the International Conference on Research in Education and Science, pp. 355–361 (2017)