Author:
Luan Sitao,Hua Chenqing,Lu Qincheng,Zhu Jiaqi,Chang Xiao-Wen,Precup Doina
Publisher
Springer Nature Switzerland
Reference30 articles.
1. Ahmed, H.B., Dare, D., Boudraa, A.-O.: Graph signals classification using total variation and graph energy informations. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 667–671. IEEE (2017)
2. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)
3. Chen, S., Sandryhaila, A., Moura, J.M., Kovacevic, J.: Signal recovery on graphs: variation minimization. IEEE Trans. Signal Process. 63(17), 4609–4624 (2015)
4. Chung, F.R.: Spectral Graph Theory, vol. 92. American Mathematical Soc. (1997)
5. Cong, W., Ramezani, M., Mahdavi, M.: On provable benefits of depth in training graph convolutional networks. Adv. Neural. Inf. Process. Syst. 34, 9936–9949 (2021)