1. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G., Silver, D., (eds.) Proceedings of ICML Workshop on Unsupervised and Transfer Learning, Proceedings of Machine Learning Research, vol. 27, pp. 37–49. PMLR, Bellevue, Washington, USA (2012)
2. Bayer, A., Chowdhury, A., Segarra, S.: Label propagation across graphs: node classification using graph neural tangent kernels. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5483–5487. IEEE (2022)
3. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: unsupervised inductive learning via ranking. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1ZdKJ-0W
4. Bojchevski, A., et al.: Scaling graph neural networks with approximate PageRank. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM (2020)
5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)